meditationatae

Just another WordPress.com site

A 2048-bit (617 digits) RSA public key, can you factor?

n =
2785840028567972318877793328371264295128
9579686400775596360785472462618845441045
5911740314074671419279493039672736406033
7058302794346148969461151430784604478860
8302737755893035638149922272068624160730
8509265600340926251564444455649365622976
8865184922341907053233123303032358568101
0618165796464257277453762819678070632408
3470420708019887710588821312286325461074
5189371499124215339565842925953793426320
8634002792828772169217510656239241005311
0756810253940478946614205207009623004455
3396064578711898659087590648512594248362
2981513806162241672544997253865343228332
0255826794762404803840230174943058301948
47248717881628827

Can you factor n ?

Advertisements

Written by meditationatae

September 23, 2014 at 5:51 am

Posted in History

3 Responses

Subscribe to comments with RSS.

  1. Nota bene: To my surprize, it appears that n + 5 , ending in 832, is easy to factor. I get:
    n + 5 = 94,156,192*p609 where p609 is a 609-digit prime.
    94,156,192 = 32*13*226337 .
    I don’t think this helps (realistically) in factoring the 617-digit RSA modulus `n’ .

    meditationatae

    September 23, 2014 at 7:24 am

  2. Hello Monsieur/Madame artlark, I saw your “like”; you’re welcome!

    meditationatae

    September 23, 2014 at 4:27 pm

  3. Post scriptum: I don’t know much about WordPress, to tell the truth …

    meditationatae

    September 23, 2014 at 4:28 pm


Comments are closed.

%d bloggers like this: